Vaccinations against influenza and pneumococcus in children with diabetes: telephone questionnaire survey

Patrick Davies, Chinedu Nwokoro and Mira Leigh

BMJ 2004;328:203-
doi:10.1136/bmj.328.7433.203

Updated information and services can be found at:
http://bmj.com/cgi/content/full/328/7433/203

These include:

References
This article cites 2 articles, 1 of which can be accessed free at:
http://bmj.com/cgi/content/full/328/7433/203#BIBL

Rapid responses
8 rapid responses have been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/328/7433/203#responses
You can respond to this article at:
http://bmj.com/cgi/eletter-submit/328/7433/203

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top left of the article

Topic collections
Articles on similar topics can be found in the following collections

Other immunology (948 articles)
Diabetes (775 articles)
Children (1842 articles)

Notes

To order reprints follow the “Request Permissions” link in the navigation box
To subscribe to BMJ go to:
http://resources.bmj.com/bmj/subscribers
Vaccinations against influenza and pneumococcus in children with diabetes: telephone questionnaire survey

Patrick Davies, Chinedu Nwokoro, Mira Leigh

Since 1992, the Department of Health has encouraged people in certain at risk groups to have vaccinations against influenza and pneumococcus. The vaccinations are recommended for patients with diabetes, heart disease, or chronic respiratory disease (including asthma), and all people older than 65. The campaign has no lower age limit; children are included by default. We investigated uptake of pneumococcus and influenza vaccine in all children with diabetes in our area. We also sought advice given about vaccination by consultants and paediatric diabetic nurse specialists in the hospitals in the region of the Eastern Deanery of the United Kingdom.

Participants, methods, and results

We interviewed all children attending Bedford Hospital’s diabetes clinic by telephone with 12 structured questions. We sent a questionnaire with a stamped self addressed envelope to children whom we could not contact by telephone. We telephoned all lead consultants and paediatric diabetic nurse specialists who specialise in diabetes in the region and asked whether they advise vaccinating children who have diabetes.

We found 75 children who are currently being followed up. We successfully interviewed 49 by telephone. We contacted the remaining 26 by letter: 11 replied (table). The overall response rate was 60/75. A total of 25 were boys, median age was 13 years, and diagnosis of diabetes had happened at median age 5 years. All the healthcare professionals responded.

A total of 56/60 children had had their diphtheria, tetanus, and pertussis vaccine, 58/60 their measles, mumps, and rubella (MMR) vaccine, and 53/57 their preschool booster (three children were too young). Professional advice given to patients varied within and between hospitals. In 9/17 hospitals, the consultant and the nurse gave different advice.

Comment

Mass vaccination should only be advised if the benefits outweigh the risks. (About a third of children would be classified as at risk and be affected.) Healthcare advisers need to be careful when advising a population measure, as any further erosion of confidence in public health advice may lead to an irretrievably poor relationship with the public. Some non-peer reviewed reports of adverse reactions to the influenza vaccination in adults are appearing on the internet. Therefore, any such advice needs to be based on good evidence.

Although vaccinating children who have serious chronic conditions where any deterioration in lung function could be life threatening—for example, cystic fibrosis—makes sense, routine immunisation for people in the categories defined by the Department of Health has implications for resources and ethics. Paediatricians need to reach consensus.

We reviewed medical journals and found no studies of children with diabetes showing increased morbidity or mortality associated with infection by influenza or pneumococcus. We got some references suggesting a theoretical benefit of vaccination for adults with diabetes but no reports of vaccine effectiveness from the Department of Health.

We found 75 children who are currently being followed up. We successfully interviewed 49 by telephone. We contacted the remaining 26 by letter: 11 replied (table). The overall response rate was 60/75. A total of 25 were boys, median age was 13 years, and diagnosis of diabetes had happened at median age 5 years. All the healthcare professionals responded.

A total of 56/60 children had had their diphtheria, tetanus, and pertussis vaccine, 58/60 their measles, mumps, and rubella (MMR) vaccine, and 53/57 their preschool booster (three children were too young). Professional advice given to patients varied within and between hospitals. In 9/17 hospitals, the consultant and the nurse gave different advice.

Comment

Mass vaccination should only be advised if the benefits outweigh the risks. (About a third of children would be classified as at risk and be affected.) Healthcare advisers need to be careful when advising a population measure, as any further erosion of confidence in public health advice may lead to an irretrievably poor relationship with the public. Some non-peer reviewed reports of adverse reactions to the influenza vaccination in adults are appearing on the internet. Therefore, any such advice needs to be based on good evidence.

Although vaccinating children who have serious chronic conditions where any deterioration in lung function could be life threatening—for example, cystic fibrosis—makes sense, routine immunisation for people in the categories defined by the Department of Health has implications for resources and ethics. Paediatricians need to reach consensus.